Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Chen, Ho-Lin; Evans, Constantine G. (Ed.)Polynomial time dynamic programming algorithms play a crucial role in the design, analysis and engineering of nucleic acid systems including DNA computers and DNA/RNA nanostructures. However, in complex multistranded or pseudoknotted systems, computing the minimum free energy (MFE), and partition function of nucleic acid systems is NP-hard. Despite this, multistranded and/or pseudoknotted systems represent some of the most utilised and successful systems in the field. This leaves open the tempting possibility that many of the kinds of multistranded and/or pseudoknotted systems we wish to engineer actually fall into restricted classes, that do in fact have polynomial time algorithms, but we've just not found them yet. Here, we give polynomial time algorithms for MFE and partition function calculation for a restricted kind of multistranded system called the 1D scaffolded DNA computer. This model of computation thermodynamically favours correct outputs over erroneous states, simulates finite state machines in 1D and Boolean circuits in 2D, and is amenable to DNA storage applications. In an effort to begin to ask the question of whether we can naturally compare the expressivity of nucleic acid systems based on the computational complexity of prediction of their preferred energetic states, we show our MFE problem is in logspace (the complexity class L), making it perhaps one of the simplest known, natural, nucleic acid MFE problems. Finally, we provide a stochastic kinetic simulator for the 1D scaffolded DNA computer and evaluate strategies for efficiently speeding up this thermodynamically favourable system in a constant-temperature kinetic regime.more » « less
-
Proceedings of the 29th International Conference on DNA Computing and Molecular Programming (DNA 29)Chen, Ho-Lin; Evans, Constantine G. (Ed.)We present an abstract model of self-assembly of systems composed of "crisscross slats", which have been experimentally implemented as a single-stranded piece of DNA [Minev et al., 2021] or as a complete DNA origami structure [Wintersinger et al., 2022]. We then introduce a more physically realistic *kinetic* model and show how important constants in the model were derived and tuned, and compare simulation-based results to experimental results [Minev et al., 2021; Wintersinger et al., 2022]. Using these models, we show how we can apply optimizations to designs of slat systems in order to lower the numbers of unique slat types required to build target structures. In general, we apply two types of techniques to achieve greatly reduced numbers of slat types. Similar to the experimental work implementing DNA origami-based slats, in our designs the slats oriented in horizontal and vertical directions are each restricted to their own plane and sets of them overlap each other in square regions which we refer to as macrotiles. Our first technique extends their previous work of reusing slat types within macrotiles and requires analyses of binding domain patterns to determine the potential for errors consisting of incorrect slat types attaching at undesired translations and reflections. The second technique leverages the power of algorithmic self-assembly to efficiently reuse entire macrotiles which self-assemble in patterns following designed algorithms that dictate the dimensions and patterns of growth. Using these designs, we demonstrate that in kinetic simulations the systems with reduced numbers of slat types self-assemble more quickly than those with greater numbers. This provides evidence that such optimizations will also result in greater assembly speeds in experimental systems. Furthermore, the reduced numbers of slat types required have the potential to vastly reduce the cost and number of lab steps for crisscross assembly experiments.more » « less
-
Proceedings of the 29th International Conference on DNA Computing and Molecular Programming (DNA 29)Chen, Ho-Lin; Evans, Constantine G. (Ed.)The field of chemical computation attempts to model computational behavior that arises when molecules, typically nucleic acids, are mixed together. By modeling this physical phenomenon at different levels of specificity, different operative computational behavior is observed. Thermodynamic binding networks (TBNs) is a highly abstracted model that focuses on which molecules are bound to each other in a "thermodynamically stable" sense. Stability is measured based only on how many bonds are formed and how many total complexes are in a configuration, without focusing on how molecules are binding or how they became bound. By defocusing on kinetic processes, TBNs attempt to naturally model the long-term behavior of a mixture (i.e., its thermodynamic equilibrium). We study the problem of signal amplification: detecting a small quantity of some molecule and amplifying its signal to something more easily detectable. This problem has natural applications such as disease diagnosis. By focusing on thermodynamically favored outcomes, we seek to design chemical systems that perform the task of signal amplification robustly without relying on kinetic pathways that can be error prone and require highly controlled conditions (e.g., PCR amplification). It might appear that a small change in concentrations can result in only small changes to the thermodynamic equilibrium of a molecular system. However, we show that it is possible to design a TBN that can "exponentially amplify" a signal represented by a single copy of a monomer called the analyte: this TBN has exactly one stable state before adding the analyte and exactly one stable state afterward, and those two states "look very different" from each other. In particular, their difference is exponential in the number of types of molecules and their sizes. The system can be programmed to any desired level of resilience to false positives and false negatives. To prove these results, we introduce new concepts to the TBN model, particularly the notions of a TBN’s entropy gap to describe how unlikely it is to be observed in an undesirable state, and feed-forward TBNs that have a strong upper bound on the number of polymers in a stable configuration. We also show a corresponding negative result: a doubly exponential upper bound, meaning that there is no TBN that can amplify a signal by an amount more than doubly exponential in the number and sizes of different molecules that comprise it. We leave as an open question to close this gap by either proving an exponential upper bound, or giving a construction with a doubly-exponential difference between the stable configurations before and after the analyte is added. Our work informs the fundamental question of how a thermodynamic equilibrium can change as a result of a small change to the system (adding a single molecule copy). While exponential amplification is traditionally viewed as inherently a non-equilibrium phenomenon, we find that in a strong sense exponential amplification can occur at thermodynamic equilibrium as well - where the "effect" (e.g., fluorescence) is exponential in types and complexity of the chemical components.more » « less
-
Proceedings of the 29th International Conference on DNA Computing and Molecular Programming (DNA 29)Chen, Ho-Lin; Evans, Constantine G. (Ed.)Discrete chemical reaction networks formalize the interactions of molecular species in a well-mixed solution as stochastic events. Given their basic mathematical and physical role, the computational power of chemical reaction networks has been widely studied in the molecular programming and distributed computing communities. While for Turing-universal systems there is a universal measure of optimal information encoding based on Kolmogorov complexity, chemical reaction networks are not Turing universal unless error and unbounded molecular counts are permitted. Nonetheless, here we show that the optimal number of reactions to generate a specific count x ∈ ℕ with probability 1 is asymptotically equal to a "space-aware" version of the Kolmogorov complexity of x, defined as K̃s(x) = min_p {|p|/log|p| + log(space(𝒰(p))) : 𝒰(p) = x}, where p is a program for universal Turing machine 𝒰. This version of Kolmogorov complexity incorporates not just the length of the shortest program for generating x, but also the space usage of that program. Probability 1 computation is captured by the standard notion of stable computation from distributed computing, but we limit our consideration to chemical reaction networks obeying a stronger constraint: they "know when they are done" in the sense that they produce a special species to indicate completion. As part of our results, we develop a module for encoding and unpacking any b bits of information via O(b/log{b}) reactions, which is information-theoretically optimal for incompressible information. Our work provides one answer to the question of how succinctly chemical self-organization can be encoded - in the sense of generating precise molecular counts of species as the desired state.more » « less
An official website of the United States government
